Advertisements
Advertisements
प्रश्न
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
पर्याय
\[a > b > 0\]
\[a < b < 0\]
\[b < a < 0\]
\[b > a > 0\]
उत्तर
Since, \[z = a + ib\] lies in third quadrant. \[\Rightarrow a < 0 \text { and } b < 0 . . . . (1)\]
Now,
\[\frac{\bar{z}}{z} = \frac{\bar{{a + ib}}}{a + ib}\]
\[ = \frac{a - ib}{a + ib}\]
\[ = \frac{a - ib}{a + ib} \times \frac{a - ib}{a - ib}\]
\[ = \frac{a^2 + i^2 b^2 - 2abi}{a^2 - i^2 b^2}\]
\[ = \frac{a^2 - b^2 - 2abi}{a^2 + b^2}\]
Since,
\[\frac{\bar{z}}{z}\] also lies in third quadrant.
\[\Rightarrow a^2 - b^2 < 0\]
\[ \Rightarrow (a - b)(a + b) < 0\]
\[ \Rightarrow a - b > 0 \text { and }a + b < 0\]
\[ \Rightarrow a > b . . . . (2)\]
From (1) and (2),
\[b < a < 0\]
Hence, the correct option is (c).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Write (i25)3 in polar form.
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
The value of \[(1 + i )^4 + (1 - i )^4\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i35
Evaluate the following : i116
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Show that `(-1+sqrt3i)^3` is a real number.