मराठी

If Z = a + I B Lies in Third Quadrant, Then ¯ Z Z Also Lies in Third Quadrant If - Mathematics

Advertisements
Advertisements

प्रश्न

If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if

पर्याय

  • \[a > b > 0\]

  • \[a < b < 0\]

  • \[b < a < 0\]

  • \[b > a > 0\]

MCQ

उत्तर

Since, \[z = a + ib\] lies in third quadrant. \[\Rightarrow a < 0 \text { and } b < 0 . . . . (1)\]

Now,

\[\frac{\bar{z}}{z} = \frac{\bar{{a + ib}}}{a + ib}\]

\[ = \frac{a - ib}{a + ib}\]

\[ = \frac{a - ib}{a + ib} \times \frac{a - ib}{a - ib}\]

\[ = \frac{a^2 + i^2 b^2 - 2abi}{a^2 - i^2 b^2}\]

\[ = \frac{a^2 - b^2 - 2abi}{a^2 + b^2}\]

Since, 

\[\frac{\bar{z}}{z}\] also lies in third quadrant.

\[\Rightarrow a^2 - b^2 < 0\]

\[ \Rightarrow (a - b)(a + b) < 0\]

\[ \Rightarrow a - b > 0 \text { and  }a + b < 0\]

\[ \Rightarrow a > b . . . . (2)\]

From (1) and (2),

\[b < a < 0\]

Hence, the correct option is (c).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 37 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write (i25)3 in polar form.


Write 1 − i in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


The value of \[(1 + i )^4 + (1 - i )^4\] is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i35 


Evaluate the following : i116 


Evaluate the following : i30 + i40 + i50 + i60 


Show that 1 + i10 + i20 + i30 is a real number


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×