Advertisements
Advertisements
प्रश्न
The value of \[(1 + i )^4 + (1 - i )^4\] is
पर्याय
8
4
-8
-4
उत्तर
-8
\[\text { Using } a^4 + b^4 = \left( a^2 + b^2 \right)^2 - 2 a^2 b^2 \]
\[(1 + i )^4 + (1 - i )^4 \]
\[ = \left( \left( 1 + i \right)^2 + \left( 1 - i \right)^2 \right)^2 - 2 \left( 1 + i \right)^2 \left( 1 - i \right)^2 \]
\[ = \left( 1 + i^2 + 2i + 1 + i^2 - 2i \right)^2 - 2\left( 1 + i^2 + 2i \right)\left( 1 + i^2 - 2i \right) \]
\[ = \left( 1 - 1 + 2i + 1 - 1 - 2i \right)^2 - 2\left( 1 - 1 + 2i \right)\left( 1 - 1 - 2i \right)\]
\[ = \left( 0 \right) - 2\left( 2i \right)\left( - 2i \right) \left( \because i^2 = - 1 \right)\]
\[ = 8 i^2 \]
\[ = - 8\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write the argument of −i.
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The amplitude of \[\frac{1}{i}\] is equal to
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
Which of the following is correct for any two complex numbers z1 and z2?
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i35
Evaluate the following : i888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.