Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
उत्तर
\[( 1 + 2i )^{- 3} \]
\[ = \frac{1}{\left( 1 + 2i \right)^3}\]
\[ = \frac{1}{1 + 8 i^3 + 6i + 12 i^2}\]
\[ = \frac{1}{1 - 8i + 6i - 12} \left( \because i^2 = - 1 \text { & } i^3 = - i \right)\]
\[ = \frac{1}{- 2i - 11}\]
\[ = \frac{1}{- 2i - 11} \times \frac{- 2i + 11}{- 2i + 11}\]
\[ = \frac{- 2i + 11}{4 i^2 - 121}\]
\[ = \frac{- 2i + 11}{- 4 - 121}\]
\[ = \frac{- 2i + 11}{- 125}\]
\[ = - \frac{11}{125} + \frac{2i}{125}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate the following:
i457
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Write the argument of −i.
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The amplitude of \[\frac{1}{i}\] is equal to
The argument of \[\frac{1 - i}{1 + i}\] is
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Evaluate the following : i35
Evaluate the following : i93
State True or False for the following:
The order relation is defined on the set of complex numbers.
State True or False for the following:
2 is not a complex number.
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8