Advertisements
Advertisements
प्रश्न
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
पर्याय
\[\frac{\pi}{3}\]
\[- \frac{\pi}{3}\]
\[\frac{\pi}{6}\]
\[- \frac{\pi}{6}\]
उत्तर
\[\frac{\pi}{6}\]
\[\text { Let }z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}\]
\[ \Rightarrow z=\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\times\frac{\sqrt{3} - i}{\sqrt{3} - i}\]
\[ \Rightarrow z=\frac{\sqrt{3} + 2i - \sqrt{3} i^2}{3 - i^2}\]
\[ \Rightarrow z=\frac{\sqrt{3} + \sqrt{3} + 2i}{4}\]
\[ \Rightarrow z = \frac{2\sqrt{3} + 2i}{4}\]
\[ \Rightarrow z = \frac{\sqrt{3}}{2} + \frac{1}{2}i\]
\[\tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]
\[ = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \alpha = \frac{\pi}{6}\]
\[\text { Since, z lies in the first quadrant } . \]
\[\text{Therefore,} arg(z)=\tan^{- 1}\left( \frac{1}{\sqrt{3}} \right)=\frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Evaluate the following:
(ii) i528
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
The argument of \[\frac{1 - i}{1 + i}\] is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if (a – b) + (a + b)i = a + 5i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i403
Evaluate the following : i30 + i40 + i50 + i60
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Show that `(-1 + sqrt3 "i")^3` is a real number.
Show that `(-1+sqrt3i)^3` is a real number.