Advertisements
Advertisements
प्रश्न
Find the value of the following expression:
i5 + i10 + i15
उत्तर
\[ i^5 + i^{10} + i^{15} \]
\[ = i^{4 \times 1 + 1} + i^{4 \times 2 + 2} + i^{4 \times 3 + 3} \]
\[ = \left\{ \left( i^4 \right)^1 \times i \right\} + \left\{ \left( i^4 \right)^2 \times i^2 \right\} + \left\{ \left( i^4 \right)^3 \times i^3 \right\}\]
\[ = i + i^2 + i^3 \left[ \because i^4 = 1 \right]\]
\[ = i - 1 - i \left[ \because i^2 = - 1, i^3 = - i \right] \]
\[ = - 1\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Evaluate the following:
(ii) i528
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
Write −1 + i \[\sqrt{3}\] in polar form .
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The polar form of (i25)3 is
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i116
Evaluate the following : `1/"i"^58`
Show that 1 + i10 + i20 + i30 is a real number
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1+ sqrt(3)i)^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`