मराठी

Find the Value of the Following Expression:I5 + I10 + I15 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following expression:

i5 + i10 + i15

उत्तर

\[ i^5 + i^{10} + i^{15} \]

\[ = i^{4 \times 1 + 1} + i^{4 \times 2 + 2} + i^{4 \times 3 + 3} \]

\[ = \left\{ \left( i^4 \right)^1 \times i \right\} + \left\{ \left( i^4 \right)^2 \times i^2 \right\} + \left\{ \left( i^4 \right)^3 \times i^3 \right\}\]

\[ = i + i^2 + i^3 \left[ \because i^4 = 1 \right]\]

\[ = i - 1 - i \left[ \because i^2 = - 1, i^3 = - i \right] \]

\[ = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.1 | Q 3.4 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Evaluate the following:

(ii) i528


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write −1 + \[\sqrt{3}\] in polar form .


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


If z is a complex numberthen


Which of the following is correct for any two complex numbers z1 and z2?

 


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i116 


Evaluate the following : `1/"i"^58`


Show that 1 + i10 + i20 + i30 is a real number


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

The order relation is defined on the set of complex numbers.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×