मराठी

Match the statements of Column A and Column B. Column A Column B (a) The polar form of i+3 is (i) Perpendicular bisector of segment joining (– 2, 0) and (2, 0) (b) The amplitude of -1+-3 - Mathematics

Advertisements
Advertisements

प्रश्न

Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant
जोड्या लावा/जोड्या जुळवा

उत्तर

Column A Answer
(a) The polar form of `i + sqrt(3)` is  (v) `2(cos  pi/6 + i sin  pi/6)`
(b) The amplitude of `-1 + sqrt(-3)` is  (iii)  `(2pi)/3`
(c) If |z + 2| = |z − 2|, then locus of z is (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0)
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(f) Region represented by |z + 4i| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (viii) Third quadrant
(h) Reciprocal of 1 – i lies in (vii) First quadrant

Explanation:

(a) Given that z = `i + sqrt(3)`

Polar form of z = `r[cos theta + i sin theta]`

⇒ `sqrt(3) + i = r cos theta + ri sin theta`

⇒ r = `sqrt((sqrt(3))^2 + (1)^2)` = 2

And `tan alpha = 1/sqrt(3)`

⇒ `alpha = pi/6`

Since x > 0, y > 0

∴ Polar form of z = `2[cos  pi/6 + "i" sin  pi/6]`

(b) Given that z = `-1 + sqrt(-3)`

= `1 + sqrt(3)"i"`

Here argument (z) = `tan^-1 |sqrt(3)//4|`

= `tan^-1 |sqrt(3)|`

= `pi/3`

So, `alpha = pi/3`

Since x < 0 and y > 0

Then θ = π – α

= `pi - pi/3`

= `(2pi)/3`

(c) Given that: |z + 2| = |z − 2|

Let z = x + yi

∴ |x + yi + 2| = |x + yi − 2|

⇒ |(x + 2) + yi| = |(x − 2) + yi|

⇒ `sqrt((x + 2)^2 + y^2) = sqrt((x - 2)^2 + y^2)`

⇒ (x + 2)2 + y2 = (x – 2)2 + y2

⇒ (x + 2)2 = (x – 2)2

⇒ x2 + 4 + 4x = x2 + 4 – 4x

⇒ 8x = 0

⇒ x = 0

Which represent equation of y-axis and it is perpendicular to the line joining the points (–2, 0) and (2, 0).

(d) |z + 2i| = |z − 2i|

Let z = x + yi

∴ |x + yi + 2i| = |x + yi – 2i|

⇒ |x + (y + 2)i| = |x + (y – 2)i|

⇒ `sqrt(x^2 + (y + 2)^2) = sqrt(x^2 + (y -2)^2)`

⇒ x2 + (y + 2)2 = x2 + (y – 2)2 

⇒ (y + 2)2 = (y – 2)2

⇒ y2 + 4 + 4y = y2 + 4 – 4y

⇒ 8y = 0

⇒ y = 0.

Which is the equation of x-axis and it is perpendicular to the line segment joining (0, –2) and (0, 2).

(e) Given that: |z + 4i| ≥ 3

Let z = x + yi

∴ |x + yi + 4i| ≥ 3 

⇒ |x + (y + 4)i| ≥ 3 

⇒ `sqrt(x^2 + (y + 4)^2` ≥ 3

⇒ x2 + (y + 4)2 ≥ 9

⇒ x2 + y2 + 8y + 16 ≥ 9

⇒ x2 + y2 + 8y + 7 ≥ 0

⇒ r = `sqrt((4)^2 - 7)` = 3

Which represents a circle on or outside having centre (0, –4) and radius 3.

(f) |z + 4| ≤ 3

Let z = x + yi

Then |x + yi + 4| ≤ 3

⇒ |(x + 4) + yi| ≤ 3

⇒ `sqrt((x + 4)^2 + y^2)` ≤ 3

⇒ x2 + 8x + 16 + y2 ≤ 9

⇒ x2 + y2 + 8x + 7 ≤ 0

Which is a circle having centre (–4, 0) and r = `sqrt((4)^2 - 7) = sqrt(9)` = 3 and is on or inside the circle.

(g) Let z = `(1 + 2i)/(1 - i)`

= `(1 + 2i)/(1 - i) xx (1 + i)/(1 + i)`

= `(1 + i + 2i + 2i^2)/(1 - i^2)`

= `(1 + i + 2i - 2)/(1 + 1)`

= `(-1 + 3i)/2`

= `- 1/2 + 3/2 i`

∴ `barz = - 1/2 - 3/2 i` which lies in third quadrant.
(h) Given that: z = 1 – i

Reciprocal of z = `1/z`

= `1/(1 - i) xx (1 + i)/(1 + i)`

= `(1 + i)/(1 - i^2)`

= `(1 + i)/2`

= `1/2 + 1/2 i`

Which lies in first quadrant.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 27 | पृष्ठ ९४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: (1 – i)4


Evaluate: `[i^18 + (1/i)^25]^3`


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

(1 + i)6 + (1 − i)3


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Write 1 − i in polar form.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The amplitude of \[\frac{1}{i}\] is equal to


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×