Advertisements
Advertisements
प्रश्न
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
उत्तर
\[\text{Let} z = \sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( \sin\frac{\pi}{5} \right)^2 + \left( 1 - \cos\frac{\pi}{5} \right)^2}\]
\[ = \sqrt{\sin^2 \frac{\pi}{5} + 1 + \cos^2 \frac{\pi}{5} - 2\cos\frac{\pi}{5}}\]
\[ = \sqrt{2 - 2\cos\frac{\pi}{5}}\]
\[ = \sqrt{2}\left( \sqrt{1 - \cos\frac{\pi}{5}} \right)\]
\[ = \sqrt{2}\left( \sqrt{2 \sin^2 \frac{\pi}{10}} \right)\]
\[ = 2\sin\frac{\pi}{10}\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} . \text { Then }, \]
\[\tan\beta = \frac{\left| 1 - \cos\frac{\pi}{5} \right|}{\left| \sin\frac{\pi}{5} \right|} = \left| \frac{2 \sin^2 \frac{\pi}{10}}{2\sin\frac{\pi}{10}\cos\frac{\pi}{10}} \right| = \left| \tan\frac{\pi}{10} \right|\]
\[ \Rightarrow \beta = \frac{\pi}{10}\]
\[\text { Clearly, z lies in the first quadrant . Therefore }, \arg\left( z \right) = \frac{\pi}{10}\]
\[\text {Hence, the polar form of z is } \]
\[2\sin\frac{\pi}{10}\left( \cos\frac{\pi}{10} + i\sin\frac{\pi}{10} \right)\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
The polar form of (i25)3 is
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The amplitude of \[\frac{1}{i}\] is equal to
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1 + sqrt3 "i")^3` is a real number.
Show that `(-1+ sqrt(3)i)^3` is a real number.