Advertisements
Advertisements
प्रश्न
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
उत्तर
Given that z1, z2 and z3, z4 are two pairs of conjugate complex numbers.
\[\therefore z_1 = r_1 e^{i \theta_1} , z_2 = r_1 e^{- i \theta_1} , z_3 = r_2 e^{i \theta_2} \text { and } z_4 = r_2 e^{- i \theta_2}\]
Then,
\[\frac{z_1}{z_4} = \frac{r_1 e^{i \theta_1}}{r_2 e^{- i \theta_2}} = \frac{r_1}{r_2} e^{i\left( \theta_1 - \theta_2 \right)} \]
\[ \Rightarrow \arg\left( \frac{z_1}{z_4} \right) = \theta_1 - \theta_2 . . . (1)\]
and
\[\frac{z_2}{z_3} = \frac{r_1 e^{- i \theta_1}}{r_2 e^{i \theta_2}} = \frac{r_1}{r_2} e^{i\left( - \theta_1 + \theta_2 \right)} \]
\[ \Rightarrow \arg\left( \frac{z_2}{z_3} \right) = \theta_2 - \theta_1 . . . (2)\]
\[\therefore \arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = \theta_1 - \theta_2 - \theta_1 + \theta_2 \]
\[ = 0\]
Hence,
\[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\]
APPEARS IN
संबंधित प्रश्न
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
If (x + iy)3 = u + iv, then show that `u/x + v/y =4(x^2 - y^2)`
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
Solve the system of equations Re(z2) = 0, z = 2.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
sinx + icos2x and cosx – isin2x are conjugate to each other for ______.