Advertisements
Advertisements
Question
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
Solution
Given that z1, z2 and z3, z4 are two pairs of conjugate complex numbers.
\[\therefore z_1 = r_1 e^{i \theta_1} , z_2 = r_1 e^{- i \theta_1} , z_3 = r_2 e^{i \theta_2} \text { and } z_4 = r_2 e^{- i \theta_2}\]
Then,
\[\frac{z_1}{z_4} = \frac{r_1 e^{i \theta_1}}{r_2 e^{- i \theta_2}} = \frac{r_1}{r_2} e^{i\left( \theta_1 - \theta_2 \right)} \]
\[ \Rightarrow \arg\left( \frac{z_1}{z_4} \right) = \theta_1 - \theta_2 . . . (1)\]
and
\[\frac{z_2}{z_3} = \frac{r_1 e^{- i \theta_1}}{r_2 e^{i \theta_2}} = \frac{r_1}{r_2} e^{i\left( - \theta_1 + \theta_2 \right)} \]
\[ \Rightarrow \arg\left( \frac{z_2}{z_3} \right) = \theta_2 - \theta_1 . . . (2)\]
\[\therefore \arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = \theta_1 - \theta_2 - \theta_1 + \theta_2 \]
\[ = 0\]
Hence,
\[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\]
APPEARS IN
RELATED QUESTIONS
Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
If (x + iy)3 = u + iv, then show that `u/x + v/y =4(x^2 - y^2)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
Solve the system of equations Re(z2) = 0, z = 2.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?