English

Find the Modulus and Argument of the Following Complex Number and Hence Express in the Polar Form: − 16 1 + I √ 3 - Mathematics

Advertisements
Advertisements

Question

Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]

Solution

\[ \frac{- 16}{1 + i\sqrt{3}}\]

\[\text { Rationalising the denominator }: \]

\[\frac{- 16}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]

\[ \Rightarrow \frac{- 16 + 16\sqrt{3}i}{1 - 3 i^2} \]

\[ \Rightarrow \frac{- 16 + 16\sqrt{3}i}{4} \left( \because i^2 = - 1 \right)\]

\[ \Rightarrow - 4 + 4\sqrt{3}i\]

\[r = \left| z \right|\]

\[ = \sqrt{16 + 48}\]

\[ = 8\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[\text { Then }, \tan \alpha = \left| \frac{4\sqrt{3}}{- 4} \right|\]

\[ = \sqrt{3} \]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

\[\text { Since the point } \left( - 4, 4\sqrt{3} \right)\text {  lies in the third quadrant, the argument is given by }\]

\[ \theta = \pi - \alpha\]

\[ = \pi - \frac{\pi}{3}\]

\[ = \frac{2\pi}{3}\]

\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right) \]

                            \[ = 8\left\{ cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right\}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.4 | Q 1.8 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×