Advertisements
Advertisements
Question
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
Solution
\[ \frac{- 16}{1 + i\sqrt{3}}\]
\[\text { Rationalising the denominator }: \]
\[\frac{- 16}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]
\[ \Rightarrow \frac{- 16 + 16\sqrt{3}i}{1 - 3 i^2} \]
\[ \Rightarrow \frac{- 16 + 16\sqrt{3}i}{4} \left( \because i^2 = - 1 \right)\]
\[ \Rightarrow - 4 + 4\sqrt{3}i\]
\[r = \left| z \right|\]
\[ = \sqrt{16 + 48}\]
\[ = 8\]
\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]
\[\text { Then }, \tan \alpha = \left| \frac{4\sqrt{3}}{- 4} \right|\]
\[ = \sqrt{3} \]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
\[\text { Since the point } \left( - 4, 4\sqrt{3} \right)\text { lies in the third quadrant, the argument is given by }\]
\[ \theta = \pi - \alpha\]
\[ = \pi - \frac{\pi}{3}\]
\[ = \frac{2\pi}{3}\]
\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right) \]
\[ = 8\left\{ cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right\}\]
APPEARS IN
RELATED QUESTIONS
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
If (x + iy)3 = u + iv, then show that `u/x + v/y =4(x^2 - y^2)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
Solve the equation `z^2 = barz`, where z = x + iy.
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.