Advertisements
Advertisements
Question
Write (i25)3 in polar form.
Solution
\[\left( i^{25} \right)^3 = i^{75} \]
\[ = i^{4 \times 18 + 3} \]
\[ = \left( i^4 \right)^{18} . i^3 \]
\[ = i^3 [ \because i^4 = 1]\]
\[ = - i [ \because i^3 = - i]\]
Let \[z = 0 - i\]
Then,
\[\left| z \right| = \sqrt{0^2 + \left( - 1 \right)^2} = 1\].
Let θ be the argument of z and α be the acute angle given by
\[\tan\alpha = \frac{1}{0} = \infty \]
\[ \Rightarrow \alpha = \frac{\pi}{2}\]
Clearly, z lies in fourth quadrant. So, arg(z) =
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The argument of \[\frac{1 - i}{1 + i}\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i93
State True or False for the following:
2 is not a complex number.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
Show that `(-1 + sqrt3 "i")^3` is a real number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8