English

If √ a + I B = X + I Y , Then Possible Value of √ a − I B is - Mathematics

Advertisements
Advertisements

Question

If\[\sqrt{a + ib} = x + iy,\] then possible value of \[\sqrt{a - ib}\] is

Options

  • \[x^2 + y^2\]

  • \[\sqrt{x^2 + y^2}\]

  • x + iy

  • x − iy

  • \[\sqrt{x^2 - y^2}\]

MCQ

Solution

x\[-\]iy

\[\sqrt{a + ib} = x + iy\]

\[\text { Squaring on both the sides, we get,} \]

\[a + ib = x^2 + (iy )^2 + 2ixy\]

\[ \Rightarrow a + ib = ( x^2 - y^2 ) + 2ixy\]

\[ \therefore a = ( x^2 - y^2 ) \]

\[\text { and } b = 2xy\]

\[ \therefore a - ib = ( x^2 - y^2 ) - 2ixy\]

\[ \Rightarrow a - ib = x^2 + i^2 y^2 - 2ixy \left[ \because i^2 = - 1 \right] \]

\[\text { Taking square root on both the sides, we get: } \]

\[\sqrt{a - ib} = x - iy\]

shaalaa.com
Concept of Complex Numbers - Square Root of a Complex Number
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 4 | Page 63
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×