English

Find the Square Root of the Following Complex Number: 1 + 4 √ − 3 - Mathematics

Advertisements
Advertisements

Question

Find the square root of the following complex number:

 \[1 + 4\sqrt{- 3}\]

Solution

\[\sqrt{z} = \pm \left[ \sqrt{\frac{\left| z \right| + Re\left( z \right)}{2}} + i\sqrt{\frac{\left| z \right| - Re\left( z \right)}{2}} \right] , \text { if Im }(z) > 0\]

\[\sqrt{z} = \pm \left[ \sqrt{\frac{\left| z \right| + Re\left( z \right)}{2}} - i\sqrt{\frac{\left| z \right| - Re\left( z \right)}{2}} \right] , \text { if Im }(z) < 0\]

\[ z = 1 + 4\sqrt{3}\sqrt{- 1} = 1 + 4\sqrt{3}i, Re\left( z \right) = 1, \left| z \right| = \sqrt{1 + 16 \times 3} = 7\]

\[ \text { Here, Im }(z) > 0\]

\[ \therefore \sqrt{z} = \pm \left[ \sqrt{\frac{\left| z \right| + Re\left( z \right)}{2}} + i\sqrt{\frac{\left| z \right| - Re\left( z \right)}{2}} \right]\]

\[ = \pm \left[ \sqrt{\frac{7 + 1}{2}} + i\sqrt{\frac{7 - 1}{2}} \right]\]

\[ = \pm \left( 2 + \sqrt{3}i \right)\]

shaalaa.com
Concept of Complex Numbers - Square Root of a Complex Number
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.3 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.3 | Q 1.7 | Page 39
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×