Advertisements
Advertisements
Question
If x + iy =\[\sqrt{\frac{a + ib}{c + id}}\] then write the value of (x2 + y2)2.
Solution
\[x + iy = \sqrt{\frac{a + ib}{c + id}}\]
\[\text { Taking modulus on both the sides }, \]
\[\left| x + iy \right| = \left| \sqrt{\frac{a + ib}{c + id}} \right|\]
\[ \Rightarrow \left| x + iy \right| = \sqrt{\frac{\left| a + ib \right|}{\left| c + id \right|}}\]
\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}} \left[ \because \left| x + iy \right| = \sqrt{x^2 + y^2} \right]\]
\[\text { Squaring both the sides }, \]
\[ x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}\]
\[\text { Squaring again, we get }, \]
\[ \left( x^2 + y^2 \right)^2 = \frac{a^2 + b^2}{c^2 + d^2}\]
APPEARS IN
RELATED QUESTIONS
Find the square root of the following complex number:
−5 + 12i
Find the square root of the following complex number:
−7 − 24i
Find the square root of the following complex number:
1 − i
Find the square root of the following complex number:
−8 − 6i
Find the square root of the following complex number:
8 −15i
Find the square root of the following complex number:
\[- 11 - 60\sqrt{- 1}\]
Find the square root of the following complex number:
\[1 + 4\sqrt{- 3}\]
Find the square root of the following complex number:
4i
Find the square root of the following complex number:
−i
Write the values of the square root of i.
Write the values of the square root of −i.
If\[\sqrt{a + ib} = x + iy,\] then possible value of \[\sqrt{a - ib}\] is
If a = 1 + i, then a2 equals