Advertisements
Advertisements
प्रश्न
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
उत्तर
\[\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i}\]
\[ = \frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} \times \frac{1 + \sqrt{2}i}{1 + \sqrt{2}i}\]
\[ = \frac{5 + 5\sqrt{2}i + \sqrt{2}i + 2 i^2}{1 - 2 i^2}\]
\[ = \frac{5 + 6\sqrt{2}i - 2}{1 + 2} \left( \because i^2 = - 1 \right)\]
\[ = \frac{3 + 6\sqrt{2}i}{3}\]
\[ = 1 + 2\sqrt{2}i\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
The argument of \[\frac{1 - i}{1 + i}\] is
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Evaluate the following : i403
Evaluate the following : i30 + i40 + i50 + i60
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.