मराठी

Write the Argument of ( 1 + I √ 3 ) ( 1 + I ) ( Cos θ + I Sin θ ) . Disclaimer: There is a Misprinting in the Question. It Should Be ( 1 + I √ 3 ) Instead of ( 1 + √ 3 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].

उत्तर

Let the argument of \[\left( 1 + i\sqrt{3} \right)\] be α. Then,

\[\tan\alpha = \frac{\sqrt{3}}{1} = \tan\frac{\pi}{3}\]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

Let the argument of \[\left( 1 + i \right)\] be β. Then,

\[\text { tan }\beta = \frac{1}{1} = \tan\frac{\pi}{4}\]

\[ \Rightarrow \beta = \frac{\pi}{4}\]

Let the argument of \[\left( cos\theta + isin\theta \right)\] be γ. Then,

\[\text { tan }\gamma = \frac{sin\theta}{cos\theta} = \text { tan }\theta\]

\[ \Rightarrow \gamma = \theta\]

∴ The argument of 

\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) = \alpha + \beta + \gamma = \frac{\pi}{3} + \frac{\pi}{4} + \theta = \frac{7\pi}{12} + \theta\]

Hence, the argument of 

\[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( cos\theta + isin\theta \right) is \frac{7\pi}{12} + \theta\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.5 | Q 24 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Write −1 + \[\sqrt{3}\] in polar form .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The principal value of the amplitude of (1 + i) is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The value of \[(1 + i )^4 + (1 - i )^4\] is


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×