Advertisements
Advertisements
प्रश्न
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
उत्तर
Given that: `(a^2 + 1)^2/(2a - i)` = x + iy ......(i)
Taking conjugate on both sides
⇒ `(a^2 + 1)^2/(2a + i)` = x – iy ......(ii)
Multiplying equation (i) and (ii) we have
`((a^2 + 1)^2(a^2 + 1)^2)/((2a - i)(2a + i))` = x2 + y2
⇒ `(a^2 + 1)^4/(4a^2 - i^2)` = x2 + y2
⇒ `(a^2 + 1)^4/(4a^2 + 1)` = x2 + y2
Hence, the value of x2 + y2 = `(a^2 + 1)^4/(4a^2 + 1)`.
APPEARS IN
संबंधित प्रश्न
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
Solve the equation `z^2 = barz`, where z = x + iy.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.