Advertisements
Advertisements
प्रश्न
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
पर्याय
`(n + 1) pi/2`
`(2n + 1) pi/2`
nπ
None of these, where n ∈N
उत्तर
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is nπ.
Explanation:
Let z = `(1 - i sin alpha)/(1 + 2i sin alpha)`
= `((1 - i sin alpha)(1 - 2i sin alpha))/((1 + 2i sin alpha)(1 - 2i sin alpha))`
= `(1 - 2i sin alpha - i sin alpha + 2i^2 sin^2 alpha)/((1)^2 - (2i sin alpha)^2`
= `(1 - 3i sin alpha - 2 sin^2 alpha)/(1 - 4i^2 sin^2 alpha)`
= `((1 - 2 sin^2 alpha) - 3i sin alpha)/(1 + 4 sin^2 alpha)`
= `(1 - 2 sin^2 alpha)/(1 + 4 sin^2 alpha) - (3sin alpha)/(1 + 4 sin^2 alpha) .i`
Since, z is purely real.
Then `(-3 sin alpha)/(1 + 4 sin^2 alpha)` = 0
⇒ sinα = 0
So, α = nπ, n ∈ N.
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
Evaluate: (1 + i)6 + (1 – i)3
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z + 1| = z + 2(1 + i), then find z.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35
Show that `(-1 + sqrt3i)^3` is a real number.