Advertisements
Advertisements
प्रश्न
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
उत्तर
Given that: `(1 + i)^2/(2 - i)` = x + iy
⇒ `(1 + i^2 + 2i)/(2 - i)` = x + iy
⇒ `(1 - 1 + 2i)/(2 - i)` = x + iy
⇒ `(2i)/(2 - i)` = x + iy
⇒ `(2i(2 + i))/((2 - i)(2 + i))` = x + iy
⇒ `(4i + 2i^2)/(4 - i^2)` = x + iy
⇒ `(4i - 2)/(4 + 1)` = x + iy ......[∵ i2 = –1]
⇒ `(-2 + 4i)/5` = x + iy
⇒ `(-2)/5 + 4/5 i` = x + iy
Comparing the real and imaginary parts,
We get x = `(-2)/5` and y = `4/5`
Hence, x + y = `(-2)/5 + 4/5 = 2/5`.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
(2i3)2
Write the conjugates of the following complex number:
3 + i
Find the value of i + i2 + i3 + i4
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Evaluate: i131 + i49
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Multiplicative inverse of 1 + i is ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a + ib = c + id, then ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`