Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
उत्तर
`3 + sqrt(-64) = 3 + sqrt(64)*sqrt(-1)`
= 3 + 8i
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Show that 1 + i10 + i100 − i1000 = 0
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Locate the points for which 3 < |z| < 4.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
What is the principal value of amplitude of 1 – i?
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
Which of the following is correct for any two complex numbers z1 and z2?
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`