Advertisements
Advertisements
प्रश्न
Locate the points for which 3 < |z| < 4.
उत्तर
|z| < 4 ⇒ x2 + y2 < 16 which is the interior of circle with centre at origin and radius 4 units And |z| > 3 ⇒ x2 + y2 > 9 which is exterior of circle with centre at origin and radius 3 units.
Hence 3 < |z| < 4 is the portion between two circles x2 + y2 = 9 and x2 + y2 = 16.
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i + i2 + i3 + i4
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
What is the reciprocal of `3 + sqrt(7)i`.
What is the principal value of amplitude of 1 – i?
1 + i2 + i4 + i6 + ... + i2n is ______.
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.