English

Locate the points for which 3 < |z| < 4. - Mathematics

Advertisements
Advertisements

Question

Locate the points for which 3 < |z| < 4.

Sum

Solution

|z| < 4 ⇒ x2 + y2 < 16 which is the interior of circle with centre at origin and radius 4 units And |z| > 3 ⇒ x2 + y2 > 9 which is exterior of circle with centre at origin and radius 3 units.

Hence 3 < |z| < 4 is the portion between two circles x2 + y2 = 9 and x2 + y2 = 16.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Solved Examples [Page 81]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 10 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.


Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`


Simplify the following and express in the form a + ib: 

(2i3)2 


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i


Write the conjugates of the following complex number:

3 + i


Write the conjugates of the following complex number:

3 – i


Write the conjugates of the following complex number:

`-sqrt(-5)`


Find the value of i49 + i68 + i89 + i110 


Find the value of x and y which satisfy the following equation (x, y∈R).

If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y


Select the correct answer from the given alternatives:

If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.


Evaluate: (1 + i)6 + (1 – i)3 


If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


Find `|(1 + i) ((2 + i))/((3 + i))|`.


The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.


Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×