Advertisements
Advertisements
Question
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
Solution
`[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
= `[(1 + "i" + 3 - 6"i")/((1 - 2"i")(1 + "i"))] [(3 + 4"i")/(2 - 4"i")]`
= `[(4 - 5"i")/(1 + "i" - 2"i" - 2"i"^2)] [(3 + 4"i")/(2 - 4"i")]`
= `((4 - 5"i")(3 + 4"i"))/((3 - "i")(2 - 4"i"))`
= `(12 + 16"i" - 15"i" - 20"i"^2)/(6 - 12"i" - 2"i" + 4"i"^2)`
= `(12 + "i" + 20)/(6 - 14"i" - 4)`
= `(32 + "i")/(2 - 14"i")`
= `((32 + "i")(2 + 14"i"))/((2 - 14"i")(2 + 14"i"))`
= `(64 + 448"i" + 2"i" + 14"i"^2)/(4 - 196"i"^2)`
= `(64 + 450"i" - 14)/(4 + 196)`
= `(50 + 450"i")/200`
= `50/200 (1 + 9"i")`
= `1/4 + 9/4"i"`
APPEARS IN
RELATED QUESTIONS
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Show that 1 + i10 + i100 − i1000 = 0
Evaluate: `("i"^37 + 1/"i"^67)`
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the principal value of amplitude of 1 – i?
If |z + 1| = z + 2(1 + i), then find z.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
If `((1 + i)/(1 - i))^x` = 1, then ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If z is a complex number, then ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35