Advertisements
Advertisements
Question
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Solution
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
= `(("i" + 2))/"i"*((3"i" + 4))/"i"*1/(5 + "i")`
= `(3"i"^2 4"i" + 6"i" + 8)/("i"^2(5 + "i")`
= `(-3 + 10"i" + 8)/(-1(5 + "i")` ...[∵ i2 = – 1]
= `((5 + 10"i"))/(-(5 + "i"))`
= `((5 + 10"i")(5 - "i"))/(-(5 + "i")(5 - "i")`
= `(25 - 5"i" + 50"i" - 10"i"^2)/(-(25 - "i"^2)`
= `(25+ 45"i" -10(-1))/(-[25 -(-1)]`
= `(35 +45"i")/(-26)`
= `(-35)/26 - 45/26 "i"`
APPEARS IN
RELATED QUESTIONS
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`-sqrt(-5)`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
What is the reciprocal of `3 + sqrt(7)i`.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`