Advertisements
Advertisements
Question
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Solution
`(4 + 3"i")/(1 - "i") = ((4 + 3"i")(1 + "i"))/((1 - "i")(1 + "i")`
= `(4 + 4"i" + 3"i" + 3"i"^2)/(1 - "i"^2)`
= `(4 + 7"i" + 3(-1))/(1 - (-1)` ...[∵ i2 = – 1]
= `(1 + 7"i")/2`
= `1/2+7/2"i"`.
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`-sqrt(-5)`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Answer the following:
Evaluate: (1 − i + i2)−15
Evaluate: (1 + i)6 + (1 – i)3
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
If z is a complex number, then ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Find the value of `sqrt(-3) xx sqrt(-6)`