Advertisements
Advertisements
Question
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Solution
`x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
∴ `((3 + 2"i")x + (1 + 2"i")y)/((1 + 2"i")(3 + 2"i")) = (5 + 6"i")/(-1 + 8"i")`
∴ `((3 + 2"i")x + (1 + 2"i")y)/(3 + 2"i" + 6"i" + 4"i"^2) = (5 + 6"i")/(-1 + 8"i")`
∴ `((3 + 2"i")x + (1 + 2"i")y)/(3 + 8"i" - 4) = (5 + 6"i")/(-1 + 8"i")` ...[∵ i2 = – 1]
∴ `(3x + 2"i"x + y + 2"i"y)/(-1 + 8"i") = (5 + 6"i")/(-1 + 8"i")`
∴ (3x + y) + (2x + 2y)i = 5 + 6i
Equating the real and imaginary parts separately, we get,
3x + y = 5 ...(1)
and 2x + 2y = 6
i.e., x + y = 3 ...(2)
On subtracting, we get,
2x = 2
∴ x = 1
∴ from (2), 1 + y = 3
∴ y = 2
Hence, x = 1, y = 2.
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Find the multiplicative inverse of the complex number.
–i
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
The value of (2 + i)3 × (2 – i)3 is ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
1 + i2 + i4 + i6 + ... + i2n is ______.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If z is a complex number, then ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`