Advertisements
Advertisements
Question
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
Solution
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are 6 and 0.
Explanation:
Given that: |z + 4| ≤ 3
For the greatest value of |z + 1|.
= |z + 4 – 3| ≤ |z + 4| + |–3|
= |z + 4 – 3| ≤ 3 + 3 ......[∵ |z + 4| ≤ 3 and |–3| = 3]
= |z + 4 – 3| ≤ 6
Hence, the greatest value of |z + 1| is 6 and for the least value of |z + 1| = 0. .....[∵ The least value of the modulus of complex number is 0.]
APPEARS IN
RELATED QUESTIONS
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`-sqrt(-5)`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Evaluate the following:
i35