Advertisements
Advertisements
Question
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Solution
x = 1 + 2i
∴ x − 1 = 2i
∴ (x − 1)2 = 4i2
∴ x2 − 2x + 1 = − 4 ...[∵ i2 = − 1]
∴ x2 − 2x + 5 = 0 ...(i)
x + 4
∵ `x^2 - 2x + 5")"overline(x^3 + 2x^2 - 3x + 21`
x3 − 2x2 + 5x
− + −
4x2 − 8x + 21
4x2 − 8x + 20
− + −
1
∴ x3 + 2x2 − 3x + 21
= (x2 − 2x + 5)(x + 4) + 1
= 0.(x + 4) + 1 ...[From (i)]
= 0 + 1
∴ x3 + 2x2 − 3x + 21 = 1
APPEARS IN
RELATED QUESTIONS
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Evaluate: i131 + i49
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
Solve the equation |z| = z + 1 + 2i.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
If z is a complex number, then ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`