English

Answer the following: Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i

Sum

Solution

x = 1 + 2i

∴ x − 1 = 2i

∴ (x − 1)2 = 4i2

∴ x2 − 2x + 1 = − 4    ...[∵ i2 = − 1]

∴ x2 − 2x + 5 = 0   ...(i)

                           x + 4
∵ `x^2 - 2x + 5")"overline(x^3 + 2x^2 - 3x + 21`
                          x3 − 2x2 + 5x
                       −     +       −                 
                                  4x2 − 8x + 21
                                  4x2 − 8x + 20
                               −      +      −         
                                                     1 

∴ x3 + 2x2 − 3x + 21

= (x2 − 2x + 5)(x + 4) + 1

= 0.(x + 4) + 1      ...[From (i)]

= 0 + 1

∴ x3 + 2x2 − 3x + 21 = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Miscellaneous Exercise 1.2 [Page 22]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. (4) (i) | Page 22

RELATED QUESTIONS

Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.


Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.


If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`


Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


Write the conjugates of the following complex number:

`sqrt(5) - "i"`


Write the conjugates of the following complex number:

cosθ + i sinθ


Find the value of i49 + i68 + i89 + i110 


Find the value of i + i2 + i3 + i4 


If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Find the value of x and y which satisfy the following equation (x, y∈R).

(x + 2y) + (2x − 3y)i + 4i = 5


Select the correct answer from the given alternatives:

`sqrt(-3) sqrt(-6)` is equal to


Answer the following:

Simplify the following and express in the form a + ib:

`5/2"i"(-4 - 3"i")`


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Answer the following:

Evaluate: i131 + i49 


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


State true or false for the following:

If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.


State true or false for the following:

If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.


If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.


For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`


Solve the equation |z| = z + 1 + 2i.


The value of `sqrt(-25) xx sqrt(-9)` is ______.


Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.


If z is a complex number, then ______.


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.


Simplify the following and express in the form a + ib.

`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×