Advertisements
Advertisements
Question
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Solution
Conjugate of `(-sqrt(5) - sqrt(7)"i")` is `(-sqrt(5) + sqrt(7)"i")`
APPEARS IN
RELATED QUESTIONS
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Find the value of i + i2 + i3 + i4
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: i131 + i49
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Locate the points for which 3 < |z| < 4.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
Solve the equation |z| = z + 1 + 2i.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35