Advertisements
Advertisements
Question
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
Options
True
False
Solution
This statement is False.
Explanation:
Because |x + iy + 1| < |x + iy − 1|
⇒ (x + 1)2 + y2 < (x – 1)2 + y2 which gives 4x < 0.
APPEARS IN
RELATED QUESTIONS
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Write the conjugates of the following complex number:
3 + i
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
The value of (2 + i)3 × (2 – i)3 is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
1 + i2 + i4 + i6 + ... + i2n is ______.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.