Advertisements
Advertisements
Question
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
Options
True
False
Solution
This statement is False.
Explanation:
Because if `barz_1`, z2 and z3 are in A.P.
Then z2 = `(z_1 + z_3)/2`
⇒ z2 is the midpoint of z1 and z3, which implies that the points z1, z2, z3 are collinear.
APPEARS IN
RELATED QUESTIONS
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of i49 + i68 + i89 + i110
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i49 + i68 + i89 + i110
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The value of (2 + i)3 × (2 – i)3 is ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
What is the reciprocal of `3 + sqrt(7)i`.
What is the principal value of amplitude of 1 – i?
If |z + 1| = z + 2(1 + i), then find z.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35