Advertisements
Advertisements
Question
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
Options
True
False
Solution
This statement is True.
Explanation:
Because in + (i)n+1 + (i)n+2 + (i)n+3
= in(1 + i + i2 + i3)
= in(1 + i – 1 – i)
= in(0)
= 0
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number:
4 – 3i
Show that 1 + i10 + i20 + i30 is a real number.
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Show that 1 + i10 + i100 − i1000 = 0
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Evaluate: (1 + i)6 + (1 – i)3
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
If z is a complex number, then ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`