Advertisements
Advertisements
Question
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
Solution
We have `sum_(n = 1)^13 (i^n + i^(n + 1))`
= (i + i2) + (i2 + i3) + (i3 + i4) + (i4 + i5) + (i5 + i6) + (i6 + i7) + (i7 + i8) + (i8 + i9) + (i9 + i10) + (i10 + i11) + (i11 + i12) + (i12 + i13) + (i13 + i14)
= i + 2(i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13) + i14
= i + 2[–1 – i + 1 + i – 1 – i + 1 + i – 1 – i + 1 + i] + (–1)
= i + 2(0) – 1
⇒ –1 + i
Hence, `sum_(n = 1)^13 (i^n + 1^(n + 1))` = –1 + i.
APPEARS IN
RELATED QUESTIONS
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
3 – i
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The value of (2 + i)3 × (2 – i)3 is ______.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`