Advertisements
Advertisements
प्रश्न
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
उत्तर
We have `sum_(n = 1)^13 (i^n + i^(n + 1))`
= (i + i2) + (i2 + i3) + (i3 + i4) + (i4 + i5) + (i5 + i6) + (i6 + i7) + (i7 + i8) + (i8 + i9) + (i9 + i10) + (i10 + i11) + (i11 + i12) + (i12 + i13) + (i13 + i14)
= i + 2(i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13) + i14
= i + 2[–1 – i + 1 + i – 1 – i + 1 + i – 1 – i + 1 + i] + (–1)
= i + 2(0) – 1
⇒ –1 + i
Hence, `sum_(n = 1)^13 (i^n + 1^(n + 1))` = –1 + i.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the value of i + i2 + i3 + i4
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Find `|(1 + i) ((2 + i))/((3 + i))|`.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`