Advertisements
Advertisements
प्रश्न
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
उत्तर
`(1 + "i")^4 xx (1 + 1/"i")^4`
= `[(1 + "i")(1 + 1/"i")]^4`
= `[(1 + "i") ((1 + "i"))/"i"]^4`
= `[((1 + "i")^2)/"i"]^4`
= `(1 + 2"i" + "i"^2)^4/"i"^4`
= `(1 + 2"i" - 1)^4/1` ...[∵ i2 = – 1]
= 16i4
= 16 ...[∵ i4 = 1]
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Find the value of i49 + i68 + i89 + i110
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Multiplicative inverse of 1 + i is ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Evaluate the following:
i35
Show that `(-1 + sqrt3i)^3` is a real number.