Advertisements
Advertisements
प्रश्न
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
उत्तर
Given that `(z - 1)/(z + 1)` is purely imaginary number.
Let z = x + yi
∴ `(x + yi - 1)/(x + yi + 1) = ((x - 1) + iy)/((x + 1) + iy)`
= `((x - 1) + iy)/((x + 1) + iy) xx ((x + 1) - iy)/((x + 1) - iy)`
⇒ `((x - 1)(x + 1) - iy(x - 1) + (x + 1)iy - i^2y^2)/((x + 1)^2 - i^2y^2)`
⇒ `(x^2 - 1 + iy(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2) = (x^2 + y^2 - 1 + 2yi)/(x^2 + y^2 + 2x + 1)`
⇒ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1)"i"`
Since, the number is purely imaginary, then real part = 0
∴ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1)` = 0
⇒ x2 + y2 – 1 = 0
⇒ x2 + y2 = 1
⇒ `sqrt(x^2 + y^2)` = 1
∴ |z| = 1
APPEARS IN
संबंधित प्रश्न
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Find the value of i + i2 + i3 + i4
Evaluate: `("i"^37 + 1/"i"^67)`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the reciprocal of `3 + sqrt(7)i`.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If z is a complex number, then ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`