Advertisements
Advertisements
प्रश्न
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
उत्तर
`x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
∴ `((3 + 2"i")x + (1 + 2"i")y)/((1 + 2"i")(3 + 2"i")) = (5 + 6"i")/(-1 + 8"i")`
∴ `((3 + 2"i")x + (1 + 2"i")y)/(3 + 2"i" + 6"i" + 4"i"^2) = (5 + 6"i")/(-1 + 8"i")`
∴ `((3 + 2"i")x + (1 + 2"i")y)/(3 + 8"i" - 4) = (5 + 6"i")/(-1 + 8"i")` ...[∵ i2 = – 1]
∴ `(3x + 2"i"x + y + 2"i"y)/(-1 + 8"i") = (5 + 6"i")/(-1 + 8"i")`
∴ (3x + y) + (2x + 2y)i = 5 + 6i
Equating the real and imaginary parts separately, we get,
3x + y = 5 ...(1)
and 2x + 2y = 6
i.e., x + y = 3 ...(2)
On subtracting, we get,
2x = 2
∴ x = 1
∴ from (2), 1 + y = 3
∴ y = 2
Hence, x = 1, y = 2.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Find the value of i + i2 + i3 + i4
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
The value of (2 + i)3 × (2 – i)3 is ______.
Evaluate: (1 + i)6 + (1 – i)3
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
If `((1 + i)/(1 - i))^x` = 1, then ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`