Advertisements
Advertisements
प्रश्न
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
उत्तर
x = `25/(3 - 4"i")`
∴ x = `(25(3 + 4"i"))/((3 - 4"i")(3 + 4"i")`
= `(25(3 + 4"i"))/(9 - 16"i"^2)`
= `(25(3 + 4"i"))/(9 - 16(-1))` ...[∵ i2 = – 1]
= `(25(3 + 4"i"))/25`
∴ x = 3 + 4
∴ x – 3 = 4i
∴ (x – 3)2 = 16i2
∴ x2 – 6x + 9 = 16(– 1) ...[∵ i2 = – 1]
∴ x2 – 6x + 25 = 0
2x + 1
`x^2 – 6x + 25")"overline(2x^3 - 11x^2 + 44x + 27)"`
2x3 – 12x2 + 50x
– + –
x2 – 6x + 27
x2 – 6x + 25
– + –
2
∴ 2x3 – 11x2 + 44x + 27
= (x2 – 6x + 25) (2x + 1) + 2
= 0.(2x + 1) + 2 ...[From (i)]
= 0 + 2
= 2
APPEARS IN
संबंधित प्रश्न
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
(2i3)2
Write the conjugates of the following complex number:
3 + i
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`