Advertisements
Advertisements
प्रश्न
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
उत्तर
(4 − 5i)x + (2 + 3i)y = 10 − 7i
∴ (4x + 2y) + (3y − 5x) i = 10 − 7i
Equating real and imaginary parts, we get
4x + 2y = 10
i.e., 2x + y = 5 ...(i)
and 3y − 5x = −7 ...(ii)
Equation (i) x 3 − equation (ii) gives
11x = 22
∴ x = 2
Putting x = 2 in (i), we get
2(2) + y = 5
∴ y = 1
∴ x = 2 and y = 1
APPEARS IN
संबंधित प्रश्न
Find the value of i49 + i68 + i89 + i110
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Show that 1 + i10 + i100 − i1000 = 0
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
Which of the following is correct for any two complex numbers z1 and z2?
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Show that `(-1 + sqrt3i)^3` is a real number.