English

Answer the following: Solve the following equation for x, y ∈ R: (4 − 5i)x + (2 + 3i)y = 10 − 7i - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Solve the following equation for x, y ∈ R:

(4 − 5i)x + (2 + 3i)y = 10 − 7i

Sum

Solution

(4 − 5i)x + (2 + 3i)y = 10 − 7i

∴ (4x + 2y) + (3y − 5x) i = 10 − 7i

Equating real and imaginary parts, we get

4x + 2y = 10

i.e., 2x + y = 5  ...(i)

and 3y − 5x = −7  ...(ii)

Equation (i) x 3 − equation (ii) gives

11x = 22

∴ x = 2

Putting x = 2 in (i), we get

2(2) + y = 5

∴ y = 1

∴ x = 2 and y = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Miscellaneous Exercise 1.2 [Page 22]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. (2) (i) | Page 22

RELATED QUESTIONS

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


Find the multiplicative inverse of the complex number.

–i 


If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.


Find the value of i + i2 + i3 + i4 


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


Find the value of x and y which satisfy the following equation (x, y∈R).

If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

(2 + 3i)(1 − 4i)


Answer the following:

Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)


Locate the points for which 3 < |z| < 4.


Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.


The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?


1 + i2 + i4 + i6 + ... + i2n is ______.


Solve the equation |z| = z + 1 + 2i.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×