Advertisements
Advertisements
Question
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Solution
x + 2i + 15i6y = 7x + i3 (y + 4)
∴ x + 2i – 15y = 7x – i(y + 4) ...[∵ i6 = (i2)3 = – 1, i3 = – i]
∴ x + 2i – 15y – 7x + i(y + 4) = 0
∴ (– 6x – 15y) + (2 + y + 4)i = 0 + 0.i
Equating the real and imaginary parts, we get,
∴ – 6x – 15y = 0 ...(1)
and y + 6 = 0 ...(2)
From (2), y = – 6
Substituting y = – 6 in (1), we get,
– 6x + 90 = 0
∴ x = 15
∴ x + y = 15 – 6 = 9
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`