English

Find the square root of the following complex number: −8 − 6i - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the square root of the following complex number: −8 − 6i

Sum

Solution

Let `sqrt(-8 - 6"i")` = a + bi, where a, b ∈ R

Squaring on both sides, we get

−8 − 6i = (a + bi)2

∴ −8 − 6i = a2 + b2i2 + 2abi

∴ −8 − 6i = (a2 − b2) + 2abi   ...[∵ i2 = −1]

Equating real and imaginary parts, we get

a2 − b2 = − 8 and 2ab = − 6

∴ a2 − b2 = − 8 and b = `(-3)/"a"`

∴ `"a"^2 - (-3/"a")^2` = − 8

∴ `"a"^2 - 9/"a"^2` = − 8

∴ a4 − 9 = − 8a2

∴ a4 + 8a2 − 9 = 0

∴ (a2 + 9)(a2 − 1) = 0

∴ a2 = − 9 or a2 = 1

But a ∈ R

∴ a2 ≠ − 9

∴ a2 = 1

∴ a = ± 1

When a = 1, b = `(-3)/1` = − 3

When a = − 1, b = `(-3)/(-1)` = 3

∴ `sqrt(-8 - 6"i")` = ± (1 − 3i)

shaalaa.com
Square Root of a Complex Number
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.2 [Page 9]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×