English

Find the square root of the following complex numbers: 3+210 i - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the square root of the following complex numbers: `3 + 2 sqrt(10)  "i"`

Sum

Solution

Let `sqrt(3 + 2sqrt(10)"i"` = a + bi, where a, b ∈ R
Squaring on both sides, we get
`3 + 2 sqrt(10)  "i"` = (a + bi)2
∴ `3 + 2 sqrt(10)  "i"` = a2 + b2i2 + 2abi
`3 + 2 sqrt(10)  "i"` = (a2 – b2) + 2abi       ...[∵ i2 = – 1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = `2sqrt(10)`

∴ a2 – b2 = 3 and b = `sqrt(10)/"a"`

∴ `"a"^2 - (sqrt(10)/"a")^2` = 3

∴ `"a"^2 - 10/"a"^2` = 3

∴ a4 – 10 = 3a2
∴ a4 – 3a2 – 10 = 0
∴ a2 – 3a2 – 10 = 0
∴ (a2 - 5)(a2 + 2) = 0
∴ a2 = 5 or a2 = – 2
But a ∈ R
∴ a2 ≠ – 2
∴ a2 = 5
∴ a = ± `sqrt(5)`

When a = `sqrt(5), "b" = sqrt(10)/sqrt(5) = sqrt(2)`

When a = `-sqrt(5), "b" = sqrt(10)/(-sqrt(5)) = -sqrt(2)`

∴ `sqrt(3 + 2sqrt(10)"i") = ± (sqrt(5) + sqrt(2)"i")`

shaalaa.com
Square Root of a Complex Number
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.2 [Page 40]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×