English

Find the square root of the following complex numbers: 2(1-3 i) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the square root of the following complex numbers: `2(1 - sqrt(3)  "i")`

Sum

Solution

Let `sqrt(2(1 - sqrt(3) "i")`= a + bi, where a, b ∈ R
Squaring on both sides, we get
`2(1 - sqrt(3) "i")` = (a + bi)2
∴ `2(1 - sqrt(3) "i")` = a2 + b2i2 + 2abi
∴ `2 - 2sqrt(3)"i"` = (a2 –  b2) + 2abi      ...[∵ i2 = – 1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = `-2sqrt(3)`

∴ a2 – b2 = 2 and b = `-sqrt(3)/"a"`

∴ `"a"^2 - (- sqrt3/"a")^2 = 2`

∴ `"a"^2 - 3/"a"^2` = 2

∴ a4 – 3 = 2a2
∴ a4 – 2a2 – 3 = 0
∴ (a2 – 3)(a2 + 1) = 0
∴ a2 = 3 or a2 = – 1
But a ∈ R
∴ a2 ≠ – 1
∴ a2 = 3
∴ a = ±`sqrt(3)`

When a = `sqrt(3), "b" = (-sqrt(3))/sqrt(3)` = – 1

When a = `sqrt(3), "b" = (-sqrt(3))/(-sqrt(3))` = 1

∴ `sqrt(2(1 - sqrt(3)"i")) = ± (sqrt(3) - "i")`.

shaalaa.com
Square Root of a Complex Number
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.2 [Page 40]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×