English

Find the square root of the following complex number: 1+43i - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the square root of the following complex number:

`1 + 4sqrt(3)"i"`

Sum

Solution

Let `sqrt(1 + 4sqrt(3)"i")` = a + bi, where a, b ∈ R

Squaring on both sides, we get

`1 + 4sqrt(3)"i"` = (a + bi)2 = a2 + b2i2 + 2abi

∴ `1 + 4sqrt(3)"i"` = (a2 – b2) + 2abi   ...[∵ i2 = – 1]

Equating real and imaginary parts, we get

a2 – b2 = 1 and 2ab = `4sqrt(3)`

∴ a2 – b2 = 1 and b = `(2sqrt(3))/"a"`

∴ `"a"^2 - ((2sqrt(3))/"a")^2` = 1

∴ `"a"^2 - 12/"a"^2` = 1

∴ a4 –  a2 – 12 = 0

∴ (a2 –  4)(a2 + 3) = 0

∴ a2 = 4 or a2 = – 3

But a ∈ R

∴ a2 ≠ – 3

∴ a2 = 4

∴ a = ± 2

When a = 2, b = `(2sqrt(3))/2 = sqrt(3)`

When a = – 2, b = `(2sqrt(3))/(-2) = -sqrt(3)`

∴ `sqrt(1 + 4sqrt(3)"i") = ± (2 + sqrt(3)"i")`

shaalaa.com
Square Root of a Complex Number
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.2 [Page 9]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×