English

If |z1| = 1(z1 ≠ –1) and z2 = z1-1z1+1, then show that the real part of z2 is zero. - Mathematics

Advertisements
Advertisements

Question

If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.

Sum

Solution

Let z1 = x + yi

|z1| = `sqrt(x^2 + y^2)` = 1   ......[Given that |z1| = 1]

⇒ x2 + y2 = 1  ......(i)

Now z2 = `(z_1 - 1)/(z_1 + 1)`

= `(x + yi - 1)/(x + yi + 1)`

= `((x + 1) + y"i")/((x + 1) + y"i")`

= `((x - 1) + yi)/((x + 1) + yi) xx (x + 1 - yi)/(x + 1 - yi)`

= `((x - 1)(x + 1) - y(x - 1)i + y(x + 1)i - y^2i^2)/((x + 1)^2 - y^2i^2)`

= `(x^2 - 1 + yi(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2)`

= `((x^2 + y^2 - 1) + 2yi)/(x^2 + y^2 + 2x + 1)`

= `((1 - 1))/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1) "i"`

= `0 + (2y)/(x^2 + y^2 + 2x + 1) "i"`

Hence, the real part of z2 is 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 17 | Page 92

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`


Simplify the following and express in the form a + ib:

`(4 + 3"i")/(1 - "i")`


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i


Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i


Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)


Find the value of x and y which satisfy the following equation (x, y∈R).

(x + 2y) + (2x − 3y)i + 4i = 5


Find the value of x and y which satisfy the following equation (x, y∈R).

If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


The value of (2 + i)3 × (2 – i)3 is ______.


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.


Multiplicative inverse of 1 + i is ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


State True or False for the following:

For any complex number z the minimum value of |z| + |z – 1| is 1.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


If a + ib = c + id, then ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×