Advertisements
Advertisements
Question
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
Solution
Let z1 = x + yi
|z1| = `sqrt(x^2 + y^2)` = 1 ......[Given that |z1| = 1]
⇒ x2 + y2 = 1 ......(i)
Now z2 = `(z_1 - 1)/(z_1 + 1)`
= `(x + yi - 1)/(x + yi + 1)`
= `((x + 1) + y"i")/((x + 1) + y"i")`
= `((x - 1) + yi)/((x + 1) + yi) xx (x + 1 - yi)/(x + 1 - yi)`
= `((x - 1)(x + 1) - y(x - 1)i + y(x + 1)i - y^2i^2)/((x + 1)^2 - y^2i^2)`
= `(x^2 - 1 + yi(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2)`
= `((x^2 + y^2 - 1) + 2yi)/(x^2 + y^2 + 2x + 1)`
= `((1 - 1))/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1) "i"`
= `0 + (2y)/(x^2 + y^2 + 2x + 1) "i"`
Hence, the real part of z2 is 0.
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
The value of (2 + i)3 × (2 – i)3 is ______.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
Multiplicative inverse of 1 + i is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a + ib = c + id, then ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`