Advertisements
Advertisements
Question
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
Options
True
False
Solution
This statement is True.
Explanation:
Let z = x + yi
∴ |z| + |z – 1| = `sqrt(x^2 + y^2) + sqrt((x - 1)^2 + y^2)`
The value of |z| + |z – 1| is minimum, When x = 0, y = 0 i.e., 1.
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
–i
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Write the conjugates of the following complex number:
3 – i
Show that 1 + i10 + i100 − i1000 = 0
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
Which of the following is correct for any two complex numbers z1 and z2?
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`