Advertisements
Advertisements
Question
Which of the following is correct for any two complex numbers z1 and z2?
Options
|z1z2| = |z1||z2|
arg(z1z2) = arg(z1).arg(z2)
|z1 + z2| = |z1| + |z2|
|z1 + z2| ≥ |z1| – |z2|
Solution
|z1z2| = |z1||z2|
Explanation:
Let z1 = r1(cosθ1 + isinθ1)
∴ |z2| = r1
And z2 = r2(cosθ2 + isinθ2)
∴ |z2| = r2
z1z2 = r1(cosθ1 + isinθ1).r2(cosθ2 + isinθ2)
= r1r2(cosθ1 + isinθ1).(cosθ2 + isinθ2)
= r1r2(cosθ1 cosθ2 + isinθ2 cosθ1 + isinθ1 cosθ2 + i2sinθ1 sinθ2)
= r1r2 [(cosθ1 cosθ2 – sinθ1 sinθ2) + i(sinθ1 cosθ2 + cosθ1 sinθ2)]
= r1r2 [cos(θ1 + θ2) + isin(θ1 + θ2)]
∴ |z1z2| = |z1||z2|
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Simplify the following and express in the form a + ib:
(2i3)2
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the reciprocal of `3 + sqrt(7)i`.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
If a + ib = c + id, then ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Show that `(-1 + sqrt3 i)^3` is a real number.
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`