Advertisements
Advertisements
Question
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
Solution
Given that: `(1 + i)^2/(2 - i)` = x + iy
⇒ `(1 + i^2 + 2i)/(2 - i)` = x + iy
⇒ `(1 - 1 + 2i)/(2 - i)` = x + iy
⇒ `(2i)/(2 - i)` = x + iy
⇒ `(2i(2 + i))/((2 - i)(2 + i))` = x + iy
⇒ `(4i + 2i^2)/(4 - i^2)` = x + iy
⇒ `(4i - 2)/(4 + 1)` = x + iy ......[∵ i2 = –1]
⇒ `(-2 + 4i)/5` = x + iy
⇒ `(-2)/5 + 4/5 i` = x + iy
Comparing the real and imaginary parts,
We get x = `(-2)/5` and y = `4/5`
Hence, x + y = `(-2)/5 + 4/5 = 2/5`.
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
–i
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the reciprocal of `3 + sqrt(7)i`.
1 + i2 + i4 + i6 + ... + i2n is ______.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`