Advertisements
Advertisements
प्रश्न
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
उत्तर
\[z = 1 - i \]
\[r = \left| z \right|\]
\[ = \sqrt{1 + 1}\]
\[ = \sqrt{2}\]
\[\text { Let} \tan \alpha = \left| \frac{Im\left( z \right)}{Re\left( z \right)} \right|\]
\[ \therefore \tan\alpha = \left| \frac{- 1}{1} \right|\]
\[ = \frac{\pi}{4}\]
\[ \Rightarrow \alpha = \frac{\pi}{4}\]
\[\text { Since point } (1, - 1) \text { lies in the fourth quadrant, the argument of z is given by } \]
\[\theta = - \alpha = - \frac{\pi}{4}\]
\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right) \]
\[ = \sqrt{2}\left\{ \cos\left( - \frac{\pi}{4} \right) + i\sin\left( - \frac{\pi}{4} \right) \right\}\]
\[ = \sqrt{2}\left( \cos\frac{\pi}{4} - i\sin\frac{\pi}{4} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
If (x + iy)3 = u + iv, then show that `u/x + v/y =4(x^2 - y^2)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
sin 120° - i cos 120°
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to
If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
sinx + icos2x and cosx – isin2x are conjugate to each other for ______.
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.